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Solutions of a system of equations of nonlinear viscoelastic fluid motion de- 
scribing inhomogeneous shear flows of linear polymers are indicated. 

The equation of motion of a nonlinear viscous fluid with some kind of nonlinearity law 
is often used to describe the flows of linear polymers in different devices. Such a descrip- 
tion does not take account of some essential features of the behavior of the linear polymers 
and their concentrated solutions. At this time there is a need to take more specifically 
into account the specifics of the material in a s=udy of the flow in elements of technologi- 
cal equipment. 

Let us consider the governing equation which, as has been established earlier [i], de- 
scribes the nonlinear effects in the flow of linear polymers and their concentrated solutions 
with acceptable accuracy for practice. This system of equations contains the minimum quantity 
of material constants and is one of the simplest nonlinear generalizations of the governing 
equation of a viscoelastic fluid with one relaxation time. Hence, the system under considera- 
tion can be an illustration of effects occurring in the flow of nonlinear viscoelastic 
materials. 

Certain exact solutions of these equations, which describe flow in one direction in in- 
finitely long cylindrical tubes of circular and annular section, the runoff layer on an in- 
clined plane or cylindrical surfaces, Couette flow and helical flows between coaxial cylinders, 
are investigated in the present paper. 
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System of Equations 

The equations of motion of a viscoelastic incompressible fluid [i] have the form 
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System (1)-(4) describes linear polymer flow and allows extension to filled systems on 
their base. Expressions (i) and (2) are the usual equations of motion of an incompressible 
continuous medium, (3) is the relaxation equation, and (4) is the definition of the stress 
tensor. 
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The relaxation time T depends on the stresses applied, where the relationship 

= Tof(D), D = ..~o (~u-b 3p) (5) 
~o 

is satisfied. System (1)-(5) contains two material constants: the initial coefficient of 
viscosity No and the initial relaxation time To, and one unknown monotonically decreasing 
universal function (5). 
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It has been shown [i] by a number of examples that the mentioned system of equations 
describes observable singularities of linear polymer motion. The function f(D) is deter- 
mined from experimental data and can be approximated for linear polymers by~ say, the func- 
tion 

f (D )  = . 1 
(I 4- k.D) v (6) 

with universal values for k and ~. 

Taking (4) into account, (1)-(3) are written as follows in a cylindrical r, 9, z coordinate 
system: 
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Stationary solutions of the system of equations (5), (7)-(17) are henceforth examined. 
The vector of the mass forces F i is zero everywhere except where specially stipulated. 

2. Rectilinear Flows 

We seek an axisymmetric solution, independent of the axial coordinate z, for the system 
of equations (5), (7)-(17) in which 
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vz=u(r), .~z=~i(r), D--D(r), v ~ = v ~ = ~ , = ~ z ~ - - 0 ,  
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The continuity equation (I0) is here satisfied identically, ~rr = ~ = i/3, ~zz = ~/3. 
(I + D), and the equation of motion (9) yields 
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from which we obtain 

u(r)= 3 % ~ [~'(D(r)(r)) dr+C, ,  D =  18~., (21) 

are a corollary of the relaxation equations. The pressure is found by integrating (7): 

P = Po - -  Az. (22) 

The first and second differences of the normal stresses are, respectively, for the class of 
flows under consideration 
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Therefore, the desired general solution is given by (18), (19), (21)-(23). The con- 
stants in this solution are found from the boundary conditions. Let us examine some particu- 
lar cases. Let the flow occur in a circular infinite tube of radius R under the effect of a 
constant pressure gradient dp/dz = --A. Then, from the condition of boundedness of the shear 
stress on the axis of symmetry of the tube B = 0. Taking the condition of adhesion on the 
tube surface, we obtain the following expressions for the distributions of the axial 
velocity, the volume mass flow rate, and the first difference of the normal stresses 
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If the approximation of f(O) in the form (6) is used for ~ = i, then (24) becomes 
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The f i r s t  t e r m s  i n  (25) and (26) a r e  known f o r  a v i s c o u s  f l u i d ,  t h e  s e c o n d  y i e l d  t h e  
c o r r e c t i o n  f o r  n o n - N e w t o n i a n  v i s c o e l a s t i c  b e h a v i o r .  I n  c o n f o r m i t y  w i t h  (26)~ a d e v i a t i o n  
from the viscous fluid flow law [2, 3] is observed for linear polymers with a filler. Relation- 
ship (26) can be used to determine the material constants ~o, xo by means of the experi- 
mental dependence of the flow rate on the applied pressure gradient. 

Among the solutions of the form (18), (19), (21)-(23) there is a solution describing 
the forced rectilinear flow between two coaxial cylinders when one of the cylinders (the 
outer, say) is fixed while the inner moves along its axis at a constant velocity. A flow 
of this kind occurs during the deposition of different coatings on a wire. 

The general solution (18), (19), (21)-(23) also describes the flow occurring in an 
annular channel formed by two fixed concentric cylinders subjected to a given pressure 
drop. If it is assumed, as before, that the motion is steady, rectilinear, and axisymmetric, 
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then the constant A in (19) is known, and B is found from the adhesion condition. The 
specific form of the solution is contained as a particular ease in the relationships pre- 
sented below for the helical flow of a nonlinear viscoelastic fluid between coaxial cylin- 
ders. 

The exact solution of (7)-(16) examined in this section can be interpreted, for an ap- 
propriate selection of constants, as the flow in a thin film. Indeed, let the laminar flow 
of a viscoelastic fluid be in a thin film of constant thickness h along the surface (outer, 
say) of a vertical circular cylinder in a gravity force field. If the acceleration of 
gravity acts in the positive direction of the z axis, then A = pg. From the condition that 
the tangential stress of the film free surface is zero, we find B = (A/2)(R+h) =. The solu- 
tion has the form 
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By passing to the limit as R § ~ and for fixed h in (27), we obtain formulas describing 
the runoff of a film of thickness h on an inclined plane making the angle a with the horizon: 
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Here A = pg sin ~; and y is the distance to the inclined plane. For the universal function 

k (A% ) z 

defined by (6) and v = i, we obtain 
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3. Curvilinear Flows 

Let us consider the stationary solution of the initial system of equations (7)-(16) that 
describes steady circular motion over concentric circles. It is sought in the form 

v~=v(r), ~r~=~(r), D=D(r), vr=Vz=~rz=~z~=0. (28) 
The continuity equation is satisfied identically in this solution. We obtain from the 

relaxation equations (Ii) and (15) and the equation of motion (8) 
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The relaxation equations (12) and (14) yield 
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We obtain the pressure by integrating (7): 

; v 2(r) ~o ~ D(r) 
P =  Po + P d r - -  dr. 

r To r 

(30) 

(31) 

The first and second differences of the normal stresses equal, respectively: 
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The constants in solution (28)-(32) are found from the boundary conditions. 

Let us turn to Couette flow that is realized in an annular slot between coaxial cylinders, 
one of which (the outer) is at rest while the other rotates at the angular velocity ~ = const. 
Let the torque (which can easily be measured) per unit length be M = const. Then 
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The angular velocity is related to the torque by the relationship 
D(R~) 

_ _  3M% 1 Q 1 ds , D ( r ) = - -  (34) 
4 ]/'2-% V'sf(s) m]o r 2 

D(Ri)  

which can be used to find the rheological characteristics no, To of a nonlinear viscoelastic 
fluid from the experimental dependence of the cylinder angular velocity on the torque measured 
on a rotation viscosimeter. 

If f(D) is defined by 

v (r) = 

(6) and v = 1, then (33) and (34) become 
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Exactly as in (25) and (26), the second terms here yield the correction for non-Newtonian 
viscoelastic behavior. 

Now~ let us mention the more general solution that includes all the flows considered 
above as particular cases. It has the form 

where 
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Analogously to  the  p r e c e d i n g ,  the  c o n s t a n t s  A, B, C a re  de te rmined  from the  boundary c o n d i -  
t i ons  on the  s u r f a c e s  r = cons t .  A s o l u t i o n  of  form (37) d e s c r i b e s  h e l i c a l  f low.  

Formulas (36) and (37) can be used as tests for the execution of numerical computations 
of nonlinear viscoelastic fluid flows, as well as for the approximate description of spiral 
flows of linear polymers with a filler. The solutions obtained can be used also to describe 
polymer flows in the production of profiled items, heat carrier flow in heat exchange sys- 
tems, viscosimeter flows. And, finally, they are useful as the simplest describers of non- 
linear effects and can be used as etalons for the development of numerical methods to solve 
problems on nonlinear viscoelastic fluid motion. 

NOTATION 

oij , stress tensor, p, pressure; Fi, mass force vector; ~iJ, Kronecker delta; ~ coef- 
ficient of shear viscosity; T, relaxation time; $ij, inner parameter;gij = ~vi/~xj, velocity 
gradient tensor; no, initial value of the shear viscosity coefficient; To, initial value of 
the relaxation time; D, dimensionless first invariant of the additional stress tensor; A, B, 
C, constants of integration; f(D), universal function characterizing the material; r, ~ , z, 
cylindrical coordinates; u = Vz, axial component of the velocity vector; v = v , circumferen- 
tial component of the velocity vector; o~, o2, first and second differences of the normal 
stress; Q, volume mass flow rate; R, radius of a circular tube; RI, Re, radii of the inner 
and outer cylinders, respectively; M, moment per unit length. 
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